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Abstract. A monomer-dimer-monomer (A-Bz-D) latlice surface readion model is proposed, 
in which two adsorption parameters X A  and XD are involved. The phase diagmm for this model 
is determined by the partial simulation method. For the case of no desorption being considered, 
six phases x e  found, which are the two-species saturated phases SAD, SBD. SBE and SE (E 
denotes the intermediate product AB), the owspecies saturated phase SB and the steady reactive 
phase R. The R and SB phases are restricted to the line XA = XD. Phase transitions between 
twwspecies phases or between R and SB are all second order, while that between R and SAD 
is first order. It appears that there exists a pentacritical point at XA = XD = 0.023 f 0,001. If 
D* desorption is taken into account, the reactive phase R extends to a region of finite area. 

1. Introduction 

The kinetics of the catalytic surface reaction has been a topic of increasing interest in recent 
years, since the lattice model of the A-B2 surface reaction was first introduced by Ziff, 
Gulari and Barshad (ZB) [l]. Lattice models of surface reactions may take into account 
the microscopic fluctuations and correlations of the surface reactants, and so give further 
insight into the kinetics of surface reactions. Up to now, several types of the lattice model 
have been studied in the literature, among them the monomer-monomer (A-B) 12-51, the 
monomer-dimer (A-B2 or A-BC) [1,6,7], the dimer-dimer (Az-Bz or AB-Cz) [&IO] 
and the dimer-trimer (Az-B~) [ll] models are well known. All these models involve two 
reaction species and thus only one adsorption parameter: although simple they all show rich 
phase s m c m  and interesting kinetics. 

In this paper, we present an A-B2-D surface reaction model which involves three 
reaction species: a dimer and two monomers. An adsorbed monomer A reacts with a half 
of an adsorbed dimer Bz to form,the intermediate product E, which in turn reacts with an 
adsorbed monomer D to form the final product F desorbing immediately. This reaction 
model mimics the oxidation of SO2 on a catalytic surface (say MnOz) i n  the presence 
of water vapour, which is impoaant in environmental sciences, such as in studying  the^ 
formation ‘of acid mists or eliminating the SO2 in exhaust. The phase diagrams for this 
reaction system are determined in the following two cases: (i) the desorption and diffusion 
of surface reactants are ignored, in this case our model is adirect generalization of the ZGB 
model [l] kom two components to three; and (ii) the desorption process of adsorbed D*, 
which occurs in real reaction systems, is taken into account. In the latter case we focus on 
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the influence of D* desorption on the steady reactive phase which is found to be in a linear 
region in the former case (see the text). 

This paper is organized as follows. In section 2 a lattice model for the A-B2-D surface 
reaction is proposed, and the partial simulation (PS) method [I21 is applied to this model. 
In section 3 simulation results are enumerated and discussed. Finally in section 4 a brief 
summary is given. 
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2. Model and simulation method 

Similar to the cellular automaton (CA) version of the A-BZ surface reaction model [13], 
in our A-Bz-D model the catalytic surface is modelled as a square lattice, each site of 
which can be in one of the following six states: empty *, A-occupied A*, B-occupied 
B*, D-occupied D*, E-occupied E* and conditional occupied state C. All the lattice sites 
are updated simultaneously during one evolution step, according to the rules described 
below. The C state is necessary to describe the dissociative adsorption of a dimer Bz; 
conditional means that during the next evolution step a C state will become a B* or * state 
depending on whether there is a nearest-neighbour C state or not. A monomer A(D) strikes 
the lattice with probability XA(XD), and can be adsorbed by a * (an empty state on the 
lattice becomes an A* (D*) with probability XA(XD)); a dimer Bz strikes the lattice with 
probability Xe = 1 - XA - XD (an empty state becomes a C state with probability XB), 
and can be adsorbed only by a nearest-neighbour empty pair (only a nearest-neighbour CC 
pair becomes a 2B* state). If an A* and a B* are nearest neighbours, they react to form an 
E* occupying one site with another site empty; if an E* and a D* are nearest neighbours, 
they react and desorb immediately leaving behind two empty states; however, if a D* has 
no E* on its nearest-neighbour sites, it desorbs with probability YD. We assume that the gas 
above the catalytic surface is continuously replenished to keep XA and XD constant, then 
the steps of the model can be summarized as follows. 

A+* .+A*  with probability XA ( 1 4  
D + * - + D *  with probability Xo (1b) 
* + c  with probability 1 - XA - XI, (IC) 

2C + 2B* for nearest-neighbour CC pairs (14 
C + *  otherwise (14 
A* +B* -+ E*+ for nearest-neighbour A* B* pairs (?R 
E*+D*-+Ff+2*  for nearest-neighbour E* D* pairs (I&?) 

with probability YD for no E* on 
its nearest-neighbour sites (W 

where the upward arrow denotes the immediate desorption of the product F. Diffusion of 
surface reactants are not considered in this model. 

To take into account the stoichiometry of two-site processes, it is required that each 
site belongs to only one nearest-neighbour pair at the most (this requirement was first 
considered by Ziff er al for a modified CA A-B2 surface reaction model [14], where 
a nearest-neighbour pair that meets the stoichiometry requirement is called a ‘matching’ 
nearest-neighbour pair). We consider this requirement in the course of simulating where, 
for example, a D* that has several nearest-neighbour E* only reacts with one of them, and 
such cases as B*A*B* + 2E* or C C C ’ I  3B* or 4B* etc are prohibited. 

D * + D + *  



Kinetic phase transitions in the A-Bz-D surface reaction model 6179 

We use the Ps method to obtain the phase diagrams of the above reaction model. In this 
method we only carry out simulations of the microscopic processes which are of significant 
importance, such as the processes of  dimer adsorptions and two-site reactions; we treat 
other processes in a mean-field way. It had been shown that this method is very effective 
in investigating the phase diagram of the A-B2 surface reaction [12]. Now we apply this 
method to the presented model. 

Let No, NA, NB, NO, NE and,Nc represent, respectively, the numbers of *, A*, B e ,  
D*, E* and C states on the lattice (No + N A  + N B  + ND + N E  + NC = ~ N ,  where N is the 
total number of lattice sites), and NAB, NED and NE represent, respectively, the numbers of 
A*B*, E*D* and CC pairs that satisfy the stoichiometry requirement on the lattice. Then 
from (1a )d lh )  one can write the relations between those numbers at time t and t + 1 as 
follows. 

NA =  NED + NAB + N c  - 2Ncc + (NO - NED)YD 
N i  = N A  + NOXA - NAB 
NL = N B  + 2Ncc - NAB 
N& = N o ( 1 -  X A  - X D )  
NL = NO + NOXD - NED - ( N D  - NED)YO 
N;  = N 5 + N A B  - N ~  

(W 
(2b) 
( 2 4  
(24 
(24  

where the quantities with a prime refer to the time f + 1 ,  and the term ( N D  - NED)YD 
represents the contribution from D* desorption. Note that these equations represent the 
changes of occupation numbers in one time step, i.e. a time interval in which all lattice sites 
are updated simultaneously. 

The numbers NAB,’NED and NCC are related to the local correlations of surface reactants, 
they may be obtained by canying out ‘trials’ or simulations of the two-site processes. To 
obtain NCC. for example, one may ‘place’ NC C states randomly on the lattice, and then 
count the number of nearest-neighbour CC pairs. Similarly, to obtain NAB, one places 
NAA* s and NBB*s randomly on the lattice and counts the number of nearest-neighbour 
A*B* pairs. In these trials the distributions of  species on the lattice are simplified to the 
one-site approximation. 

We perform the simulations as follows. The positions of all lattice sites are labelled 
by integer numbersfrom 0 to N - 1. At each time step when NA.  N E ,  N E ,  N D  and NC 
are found from (2a)-(Zf), a ’random number generator’ generates NA.  NB, N E ,  N D  and NC 
random integer numbers on 10, N - 11 respectively, the positions of A*, B*, E*, D* and 
C~ states on the lattice are modelled as these five random integer number sequences. Then 
NAB, NED and N c c  are calculated with a computer. 

As described above, in the PS method one looks at the surface reaction in a number 
space: the square lattice (together with periodic boundary conditions) only means that each 
site has four nearest-neighbour sites, and updating the lattice means only changing the set of 
occupation numbers. Thus the PS method is essentially a mean-field method, supplemented 
with computer simulations. With this method, one may obtain qualitatively reliable results 
for phase diagrams of  surface reaction systems 1121 with much less work. 

3. Results and discussions 

Simulations have been carried out on an N = 64 x 64 lattice with periodic boundary 
conditions and initial values: NO = N ,  and N A  =.NB = N c  = NO = N E  = 0. The average 
coverage fractions 6, = N A / N ,  OB = N B / N ,  OD = N D / N  and S, = N E / N  are obtained 
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when the system has reached a steady state. Usually, 102-104 time steps are needed to 
reach such a state. 
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3.1. Care I: no desorption (YD = 0) 

For the case with no desorption six different phases are found from the simulations 
(figure I@)): the two-species saturated phases with A* and E* (SAE). A* and D* (SAD), 
B* and D* (SBD) and B* and E* (S& the one-species saturated phase with B* (SB) and 
the reactive phase (R). The phase SBD lies in the region with relatively small XA, while the 
SAE and SBE lie in the region with relatively small XD. Figure l(b) is an amplified diagram 
for XB > 0.6. 

A 

0.6 

0 . 6  

0.8 

'2 0 0.2 0.L 0.6 0.8 1.0 

A 

0.16 .... ...- .... 

0 0.08 0.16 0.2L 0.32 0.40 

x,' Xn 

Figure 1. (a) Phase diagram for YD = 0. Dotted lines denote the second-order transition lines 
between two-species s a w e d  phases, the onespecies saturated SB and the steady reactive phase 
Rare represented by broken and full lines respectively. A pentacritical point seems to exist, as 
shown in (b). The probabilities corresponding to a given point inside the rriangle may be read 
along the XA. XD and XB axes. 

Some remarks on the phase diagrams can be made. 
(i) The two-species saturated phases are separated by four critical lines labelled by LA, 

LB, LD or LE (the phases SAE and SAD are separated by LA, SAD and SBD by LD, SBD and 
SBE by LB, and SBE and SAE by LE). On the critical line Li the corresponding coverage 
8, has its maximum value 6'i = 1 (i =A, B, D or E), departing from this line Si decreases 
continuously while another coverage 8, increases correspondingly, forming a saturated phase 
Si,. This suggests that the transitions across these lines are second order. The variations in 
coverage across these lines are illustrated in figure 2. 

Figure 2(a) shows that coverages @A, e,, 0, vary as a function of XD (XA is 
fixed on 0.4) and at the point XD = X& = 0.1667 f O.OOO1, the system changes 
from the phase SAE (XD c X&) to the SAD (XD > X&). Similarly, in (b)  and (c) 
corresponding transitions occur at XD = X& = 0.0166 & 0.0001 (XA is fixed at 0.15) and 
XA = X21 = 0.1491 f 0.0001 (XD is fixed at 0.4) respectively; while in (d) for a fixed 
value XD = 0.02, a transition occurs at XA = X a  = 0.02 which is determined precisely, 
in contrast to (a), (b) and (c) where the transition points are only approximately located. 
This simulation result suggests that the coverage 0, may really reach its maximum value 
on the line LB and form a saturated phase SB. 

= 0) it is necessary that by the Indeed, to reach SB (e, = 1 and 6.4 = SE = 
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6, 
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end of the process all created A*s (the summation of A*s created in all. time steps) have 
been transformed into E*s and, all created D*s and E*s have been annihilated, through 
the reactions of A* with B* and E* with D*. Note that for correct stoichiometry one A* 
transforms one E* and one D*(E*) reacts with one E* (D*). Thus it is necessary for all 
created A*s to be equal to the number of all created D*s. For a sufficiently large system 
this requirement may be easily satisfied on the line XA = XD, since the adsorption of the 
two monomers A and D is equivalent on this line: whereas there is no equivalency in the 
adsorption between a dimer B2 and a monomer A (or D) to support the existence of SA. SE 

(ii) The phases R and Sg lie on the line XA = XD, SE is located in the range 
0 < X < XI = 0.023 2~ 0.001 (the broken line in figure l), and R is in the range 
XI < X < X2 = 0.251 i 0.001 (the full line), where X = XA = XD. Departing from 
this line the system drops to two-species saturated phases, in either a continuous way (for 
0 < X e XI, see figure 2(d)) or a discontinuous way (for XI < X < X2). Along this 
line the coverages @A, h, and & vary with X continuously at the critical point X1 but 
discontinuously at the critical point X2, suggestingthat X1 is a second-order phase transition 
point while X2 i s ~ a  first-order one; In figure 3 we present the variations in coverage with 
X, which exhibit an A-B2-like phase structure as presented in [l]. 

(iii) As shown in figure 1, in our simulations it is found that the five lines R, LA. LB. 
LE and LO appear to converge at the point XA = XD M 0.023. The lower part of the critical 
line LA is too close to the reactive line R to be seen clearly in figure I(a); however, we 
have examined these two lines carefully and found that they are still distinguishable near 

and SD. 
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the point X A  = XI, = 0.05 (figure l (b)) .  Hence a reasonable conclusion is that the point 
XA = XD 0.023 is a pentacritical point. Further examinations of this conclusion are 
difficult in our simulations because the processes proceed extremely slowly and fluctuations 
play an increasingly important role as this critical point is approached. 

Bo-tao B a n g  and Hui-yan Pan 

Figure 3. Phase transitions along the line XA = XD. Coverages of A(O), B(0). D(A) and 
E(r) as a functinn of X(X = XA = Xo). Transitions occur at two points XI = 0.023 * 0.001 
(second order) and XZ = 0.251 & 0.001 (first order). 

(iv) Finally, we would like to give some simple analyses of the phase.diagram of the 
A-Bz-D model. Clearly the occurrence of the two-species saturated phases S,Q and SDE are 
prohibited by the reactions of A* with B* and D* with E*; however, if one of the coverages 
@A, OB, and OD first decreases to zero before the reaction system reaches a steady state, the 
system will tend to one of the four two-species saturated phases: SA€, SAD, SBD and SBE. 
If the first coverage to vanish is 0, (usually for small XD), the system will eventually tend 
to SAE or SBE, depending on the next coverage to vanish being OB or BA. Similarly, if the 
first coverage to vanish is e,, the system will eventually tend to SBD or S B ~ ,  while if the 
first coverage to vanish is OB, the system will tend to SAD or SAE. The reaction condition 
X A  = XD may be verified by a mean-field analysis: defining the average coverage of ij 
pairs as eij = 2 N i j / N  one may easily write the following rate equations from (26). (2e) 
and (2fi: 

When the reaction system reaches asteady state. i.e. d&/dt = 0 (i = 0, A, B, C, D and 
E), the above equations give two solutions: one solution is X A  = XD, which corresponds 
to the reactive state in the case 00 # 0, and another is eo = 0, 8AB = 0 and BED = 0, 
which corresponds to the saturated states. One may also write similar rate equations 
corresponding to (2a), (2c) and (Zd) which are useful in determining the reactive range 
on the line X A  = XD, but for a preliminary verification of the occurrence of reactive and 
saturated phases, only equations (3a), (3b) and ( 3 4  are needed. 
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3.2. Case II: D* desorption (Y, # 0) 

First we consider the case YD = 1, i.e. an adsorbed D* without any nearest-neighbour E* 
will promptly desorb. The phase diagram is shown in figure 4. Comparing this diagram 
with that in figure l(a), significant changes are found. 

The phases SBD and Sg now disappear: the phase SAD reduces to a one-species saturated 
phase SA; while phases SA€. SBE and R extend considerably towards the region with large 
X D .  All these changes are reasonable, since no adsorbed D* can be retained on the lattice 
for more than one time step. Again, transitions between saturated phases SA and &E, and 
S u  and SBE, are second order; while that between R and all saturated phases is first order. 
TWO points XA = XD = 0.031 & 0.001 and X A  = XD = 0.223 zk 0.001 are found to be 
tricritical points. 

0.1 

0.2 

1.0 
02 D 

0 0.2 0.4 0.6 0.8 1 .o 

Figure 4. Phase diagram for YD = 1 

Now let us focus on the changes in the steady reactive region with desorption probability 
YD. Further simulations indicate that, as I'D decreases,~the region of R gradually reduces, 
mainly due to thelowering in the right-hand boundary line of R phase (figure 5); in contrast 
to this, the left-hand bound is hardly affected by YD. while changes in the low bound make 
a negligible contribution to the changes of the R region. 

In figure 6, we present variations in the right-hand bound of R (X;) with I'D for a fixed 
XA = 0.1, on a log-log scale. For small I'D (say I'D i 0.1). the variation of X; with Yo 
may be described by a power relation: 

x; - Y{ 

where the exponent p has a value 0.39 f 0.02. 

4. Summary 

For the A-B2-D model in the case in which no desorption is considered (Case I), the surface 
reaction system has six phases: the two-species saturated phases SAE, SAD, SBD and SBE, 
the one-species saturated phase SB and the reactive phase R. The phases R and SB lie on 
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Figure 5. The right-hand bound of R as a function of YD. The five lines correspond, boom left 
to right. to YD = 0.0.001, 0.01, and 0.1 and I respectively. 

-3 -2 -1 0 
lcgIY,l 

Fwre 6. The variation in X$ with Yo for a fixed XA = 0.1. plotted on a log-log scale 

the line XA = XD. Transitions between the two-species saturated phases or between R and 
Sg phase are all second order, while that between R and SAD is first order. It seems that 
there exists a pentacritical point located at XA = XO = 0.023 f 0.001. 

The presented model mimics the catalytic surface reaction: SOzffO~+Hz0 + &SO,+, 
in which water is in the vapour state. It is shown experimentally that under normal conditions 
no appreciable desorptions of SOz(A) and Oz&) are observed 1151, thus we only consider 
the desorption of HzO(D) in the model. Simulation results indicate that when D* desorption 
is taken into account (Case E), even for a desorption probability as small as YD = 0.001, 
the reactive phase is no longer indicated on a line, but in a region with finite extension. 
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